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develop purging and evacuation procedures for the S-IV vehicle.
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unsteady state conditions for full scale vehicles was accomplished
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decreased by use of perforated honeycomb core material, this would
offset any advantages resulting from confining or isolating individual
leaks. Further study of these factors is needed. :

ﬁ{ bb'\f//
e

NASA - GEORGE C, MARSHALL SPACE FLIGHT CENTER






NASA - GEORGE C. MARSHALL SPACE FLIGHT CENTER

TECHNICAL MEMORANDUM X- 530 94

INTERCELLULAR MOBILITY OF FLUIDS
WITHIN HONEYCOMB-REINFORCED COMMON BULKHEADS
(BULKHEAD PURGING)

By

C. T. Egger, T. J. Carter, and J. B. Gayle

MATERIALS DIVISION
PROPULSION AND VEHICLE ENGINEERING LABORATORY

RESEARCH AND DEVELOPMENT OPERATIONS






TABLE OF CONTENTS

INTRODUCTION . . .. ..., . ...

ACKNOWLEDGMENT , . . . . e

CONCLUSIONS .. ..........

REFERENCES . ... .........

----------------------

---------------------

---------------------



LIST OF ILLUSTRATIONS

Figure Title Pay

1 Details of Rectangular Honeycomb

SPECiMen « + v v v v o v v v e e e 9
2 Details of Annular Honeycomb

Spec]'_men ..... S T I I I e+« 10
3 Details of Test Arrangements, . . . . . « . « « e e s 11
4 Average Air Flow Rates for Rectangular

Specimens., . . ..+ v o o -0 e e s e e e e e e e e ey e 12
5 Average Air Flow Rates for Annular

SPECIMENS . « v v eh vt v e v o e e v e e e e e e 13
6 Average Nitrogen Flow Rates for Annular

Specimens. . - . . e e v e e s s e e e e e e e e e e e e 14
7 Cross-Plots of Average Permeabilities to Air,

Helium,and Nitrogen . . co o o o « ¢+ ¢ = s+ ¢« o o o o o o s o oo 15
8 Pressure Profile During Steady-State Radial

Air Flow Through Annular Honeycomb Specimen. . .. .. .16

9 Calculated Chronological Pressure Reductions for

Laboratory Specimen and Full Scale Bulkheads. .. .. 17
10 Comparison of Observed and Calculated Unsteady

State Behavior for 8-Inch Annular Specimens. . .. ... 18
11 Comparison of Observed and Calculated Unsteady

State Behavior for l4-Inch Annular Specimens, ... .. .19

iv



LIST OF TABLES

Table Title Page
I Air Flow Through Rectangular Honeycomb
SPECIMeNS . v v v vt v e 4 ot e e e e e e e e e e .. e 20
11 Air Flow Through Annular Honeycomb
Specimens (I.D. =2") . . . . .. ............. 21
III Nitrogen Flow Through Annular Honeycomb
Specimens (I.D. = 2"). . v v v vt v v v .. e e e e e e 22
v Helium Flow Through Annular Honeycomb
Specimens (I.D. = 2")c cvo v o v v b e b 4 v b et e e aa e 23
A Energy/Mass Transport Analogy (For Heat
Conduction and Molecular Flow) . . . . e e e e 24






TECHNICAL MEMORANDUM X=-53094

INTERCELLULAR MOBILITY OF FLUIDS
WITHIN HONEYCOMB-REINFORCED COMMON BULKHEADS
(BULKHEAD PURGING)

SUMMARY

The flow of gases through annular and rectangular face-sealed
honeycomb specimens was studied as a function of pressure drop to
develop purging and evacuation procedures for the S-IV vehicle.
Extrapolation of steady state results for laboratory specimens to
unsteady state conditions for full scale vehicles was accomplished
by using an energy/mass transport analogy.

The results indicated that mass transport through the honeycomb
is fast enough to cause concern but too slow to permit rapid purging
or evacuation. Although purging and evacuation times could be greatly
decreased by use of perforated honeycomb core material, this would
offset any advantages resulting from confining or isolating individual
leaks. Further study of these factors is needed.

INTRODUCTION

The S-IV stage of the Saturn I launch vehicle and the S-II and
S-IVB stages of the Saturn V launch vehicle use hydrogen and oxygen as
the fuel and oxidizer. For each stage, the hydrogen container is
located immediately above the oxygen container. The containers are
separated by honeycomb reinforced common bulkheads which consist of
aluminum face sheets adhesively bonded to fiberglass honeycomb material.
The large sizes and hemispherical shapes of these bulkheads together
with the extremely low temperature environments suggest the possibility
of leakage of either hydrogen or oxygen or both into the honeycomb cores.
Because of the extreme flammability of hydrogen/air and hydrogen/oxygen
mixtures and also the sensitivity of the honeycomb material and adhesive
to impact while in contact with liquid oxygen, it was considered desir-
able to evacuate and/or purge the bulkheads before propellant loading.

Although conventional fluid flow phenomena are not well understood,
much less is known about the flow of fluids through composite and
cellular materials and structures. Therefore, this investigation was
carried out to obtain data needed for developing evacuation and purging



procedures for the Saturn hydrogen/oxygen stages and to contribute to
basic knowledge of transport phenomena within composite and/or cellular
materials.
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EXPERIMENTAL

Two basic sample configurations were employed: rectangular (FIG 1)
for basic data and ease of testing, and annular (FIG 2) for elimination
of possible end effects (such as leakage) and for studies on a geometry
specific to the bulkhead configuration.

The honeycomb core of the one-inch thick "sandwich" was 3/16-inch
cell, 4 pounds per cubic foot, 91LD phenolic fiberglas material which is
consistent with the bulkhead used for the S-IV stage. The adhesive was
HT-424, an epoxy-phenolic, supplied by Bloomingdale Rubber Company,
having an uncured thickness of 0.015 inch. All face sheets were of
2014-T6 aluminum. Before bonding, the aluminum was cleaned in a dilute
sodium dichromate-sulfuric acid solution at 150°C (302°F) to 160°C
(320°F) for 20 minutes. The cleaning solution was rinsed off with
distilled water, and the metal was allowed to air dry. The sandwich was
bonded at 171°C (340°F) for 40 minutes between heated plates under a
pressure of 25 psi. This procedure completed the annular specimens.
However, for the rectangular specimens, the sides parallel with the flow
direction were completely sealed by potting with Armstrong C-1 epoxy
(8i0y-filled). This material also was used to bond the end plates. Flow
was normal to the ribbon direction for all rectangular specimens except
for one set (designated 6 x 6%) for which the flow was parallel to the
ribbon direction. Approximately 1/8-inch space was left between the end
plates and the fore and aft edges of the honeycomb to allow free gas
distribution both upstream and downstream of the honeycomb sandwich
(FIG 1). 1In this way, the rectangular specimens were completely self-
contained, whereas a fixture was required to contain the gas entering or
leaving the periphery of the annular specimens. For both pressure and
vacuum runs, flow rates for the annular specimens were measured at the
center port to eliminate effects of possible fixture leakage. Thus, the
direction of flow was toward the periphery for vacuum runs and away from
the periphery for pressure runs on these specimens.



Sketches of all flow arrangements, both for pressure and vacuum
and for annular and rectangular specimens, are shown in FIG 3, where the
flow is from left to right in all cases. Equilibrium flow normally
occurred in a few seconds, but about five minutes were allowed before
flow measurements were made, and steady state was verified by repeated
readings for a brief period.

FIG 3a shows a rectangular specimen under vacuum permeation
testing. Upstream pressure was essentially barometric, and downstream
pressures generally varied from 5 to 25 Torr, depending on the permeation
rate. The flowmeter shown was calibrated periodically against and
sometimes supplemented by a wet test meter. Further calibration was pro-
vided by the Test Laboratory at this Center.

The test setup for the annular specimens (FIG 3b) was similar to
that for the rectangular specimens except that the above-mentioned
fixture was required because of the open peripheral honeycomb face.

Pressure tests (with various gases) as shown in FIG 3c and 3d were
conducted at pressure drops of 5, 15, 25, 35, and 50 psi (all + 0.25 psi).
A 12-inch precalibrated bourdon tube pressure gauge was used for monitor-
ing upstream pressure. Downstream pressure was essentially atmospheric,
the flowmeters imposing a pressure drop of less than 0.5 inch of water. ,

Runs were made in a somewhat random order and by several operators
to reduce systematic experimental errors.

Data obtained for the rectangular specimens for air are shown in
Table I. Tables II, III, and IV show similar data for annular specimens
for air, nitrogen, and helium, respectively.



RESULTS

Rectangular Specimen

FIG 4 presents average air flow rates for rectangular specimens as
functions of AP. Also included are the same flow rates as functions
of A(P?). The portions of the curves indicating flow rates for rela-
tively low pressure drops are markedly non-linear. This suggests that
some bending and distortion of the specimens take place because of the
pressure drop imposed during testing. This distortion appears to
increase with increasing pressure drop to approximately 15 psi.

Inspection of the flow rates for pressure drops of 15 psi and
greater indicates that the AP plots generally depart from a visually
fitted straight line in a more or less random fashion, whereas the
departures for the A(P?) plots are more systematic, with the first and
last points generally falling below the line and the intermediate points
above. This more nearly linear behavior noted for the AP plots suggests
that a major component of the total flow is molecular in nature. On the
other hand, the filled symbols (representing the data for the vacuum
runs) are more consistent with the data for the pressure runs for the
A(P?) plots. This suggests that the flow is viscous in nature.

The overall average permeability for the rectangular specimens
(excluding the 6 x 6% set) corresponds to 0.0147 SPU*. Comparison of
the results for the 6 x 6 and 6 x 6% specimens indicates that the latter
specimens (for which the flow was parallel to the ribbon direction) were
much more permeable.

Annular Specimens

AP and A(P?) plots for the annular specimens are given in FIG 5
and 6 for air and nitrogen and generally are consistent with those for
the rectangular specimens.

To permit further interpretation, the average values for Tables
II, I1I, and IV were cross plotted in FIG 7 to indicate relative permea-
bilities of the individual specimens to the different gases. Because of
similarity of gas properties, the nitrogen/air plot gives little clue as
to transport mechanism but indicates reproducibility of results. The

#Permeabilities are given in standard metric units (SPU) :

(std cc) (¢m)

L SPU = (sec) (cm?) (cm Hg AP)




appreciable difference in properties of helium and nitrogen or air
permits speculation on the major or prevailing transport mode, as

shown in FIG 7 by indicating the relations expected for purely viscous
and molecular flow. The experimental points fall between the lines

that indicate expected behavior for molecular and viscous flow, confirm-
ing the indication that both mechanisms are operative.

An attempt was made to establish pressure profiles within one of
the annular specimens by pressure measurements at 52 points during
steady-state flow. The results, given in FIG 8, suggest some limited
influence of ribbon direction on flow within the specimen, thus confirm-
ing the indication obtained for the rectangular specimens. This
observation of greater permeability parallel to the ribbon direction
indicates that face-to-face bonds within the ribbon provide some flow
passages. Since all ribbon orientations are encountered by the gases
permeating the annular specimens, it would be expected that such speci-
mens would yield data representing a compromise between 6 x 6 and 6 x 6%
results. This is not entirely supported by the data since comparison of
results in Tables I and II shows that, in general, the annular and
rectangular data are similar, average values for air being 0.0140 and
0.0147 SPU, respectively.

DISCUSSION

The flow rates and permeabilities observed indicate that transport
through the honeycomb is fast enough to cause concern but too slow to
permit rapid purging. 1In the absence of structural or other limitations,
it would appear that deliberate perforation of the honeycomb would permit
ready purging and therefore be a desirable modification for the hydrogen-
stage Saturn common bulkheads.

From a more basic viewpoint, experimental evidence suggests that
molecular flow supplemented by some viscous flow is responsible for
transport of fluids within the honeycomb "sandwich" structure. Consider-
ation of known permeation rates for the HT-424 tends to preclude
permeation of the adhesive as a factor contributing substantially to the
flow observed. However, it must be remembered that the HT-424 is a
"filleting" or '"foaming" adhesive which contains gas bubbles of easily
visible size. The frequency of occurrence of these bubbles suggests the
possibility of "bridging'" honeycomb walls by gas bubbles in the adhesive,
thus providing almost uninterrupted flow paths.

For Saturn applications, the order and mechanism of fluid flow
through the LH, - LOX common bulkhead honeycomb core are important because
of safety and reliabllity factors. Hazards which can be minimized by
effective purging with the proper gas are:



(1) Liquid oxygen impact sensitivity problems of adhesives and
other organic materials resulting from condensation of liquid oxygen
from air indigenous to the bulkhead

(2) 1Intolerable increases of thermal conductivity caused by the
presence or influx of undesirable gases (especially He and H,)

(3) Explosive hazards resulting from the presence of oxygen (air)
and the leakage of hydrogen to form a mixture, in undetermined phase, of
explosive concentration

(4) Excessive or extended gradual influx of gases, particularly
condensibles, during tanking and hold. Upon detanking and warmup, the
evaporation rate may greatly exceed the permeation rate and, therefore,
result in local pressurized areas which could impair bulkhead structural
integrity.

It is evident that purging and evacuation times could be greatly
decreased by use of perforated honeycomb core material. However, this
would offset any advantages resulting from confining or isolating
individual leaks. Further study of these factors is needed.

APPLICATION: TRANSIENT STUDY

During the early stages of this investigation, leaks were dis-
covered in S-IV bulkheads, and a purging procedure was required to
maintain internal oxygen concentrations below the lower explosive limit.
Use of available data permitted recommendation of a purge and backfill
cycle as outlined below. All calculations were based on results of
permeation studies with air and nitrogen on the annular specimens.

The initial approach to the problem consisted of defining the
system in basic laminar and molecular flow equations for radial flow
within the annulus (or the flat cylinder in the case of the S-IV stages).
Mathematical difficulties and the need for an immediate solution resulted
in abandoning this basic approach in favor of one based on a direct and
accepted analogy with heat conduction, the appropriate solutions for
which were immediately available (Ref. 2 and 3) as a graph employing
dimensionless variables.

One of the most critical decisions in this analysis was the choice
of a permeability value which determined the mass diffusivity. Based on
the results available at that time, a range of 0.01 - 0.02 SPU that
resulted in diffusivities of 0.416 - 0.833 cm?/sec was chosen. Subsequent
completion of permeation experiments yielded an average permeability of
0.0140 SPU for annular honeycomb specimens using air.



Further assumptions inherent in this analogy are two dimensional
isotropy (equal flow along all radii): absence of effects of upstream
and downstream face plates ("end effects") and validity of the molecular
flow mechanism. An ‘equivalent diameter of 50 feet was assumed to allow
for curvature of the S-IV bulkhead.

The method of calculation consisted briefly of establishing the
permeability parameters analogous to heat transfer parameters and
evaluating the resulting family of essentially linear relations of the
form:

P - P DO
1n ?’_—P— = f 2
b Tm

Analogous dimensional groupings of heat and mass transfer parameters are
given in Table V. TFIG 9 shows calculated chronological pressure reduction
profiles for a l4-inch diameter laboratory specimen and for a full sized
bulkhead, both based on a permeability of 0.02 SPU and a peripheral
pressure of not more than 0.5 psia during evacuation. The results indi-
cated that evacuation to a pressure of less than three psia at all points
within the bulkhead would require approximately three days. Similar
calculations indicated that backfilling with nitrogen to reduce the
oxygen concentration to below five percent by volume also could be
accomplished in approximately three days. To afford protection against
damage to the bulkhead during warmup caused by rapid expansion of gases
leaking into its interior during static testing, reevacuation for a
period of three days just before tanking was recommended.

To obtain confirmation for the method of calculation, unsteady state
flow behavior was determined experimentally for specimens number 8-4 and
14-1 and compared with results calculated using steady-state permea-
bilities of 0.01 and 0.02 SPU. The results are given in FIG 10 and 11.

It can be seen that the agreement between calculated and experimental
results is good for both specimens, lending credence to the method of
calculation.

The purging and backfilling cycles are conservative since all
assumptions were in favor of low flow rates. For example, use of the
molecular flow regime for calculation results in lower rates (or longer
times) than would be encountered with viscous flow. Two dimensional
stresses of the honeycomb material resulting from bonding between curved
sheets would tend to open additional passages for gas. In these respects,
the times specified for the purge cycles may be unnecéssarily long;
however, reduction of the times cannot be made safely without intensive
additional investigation which does not appear to be warranted.



CONCLUSIONS

Room temperature studies of the flow of gases through annular and
rectangular face-sealed honeycomb specimens were made for several
pressure-drop levels. The results indicated an overall average permea-
bility of approximately 0.014 SPU.

Analysis of the results suggested that molecular flow supplemented
by some viscous flow is responsible for mass transport within the honey-
comb structure. Tt also was noted that use of perforated honeycomb core
material would permit greatly decreased purging and evacuation times.
However, perforation of the core material would offset any advantages
which might result from confining or isolating individual leakage
points. Additional study of these factors is needed.

Application of these results to the problem of purging the S-1V
bulkhead suggested a procedure in which the bulkhead is evacuated for
three days, backfilled with gaseous nitrogen for three days, and then
reevacuated for three days just before tanking with propellants.
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Pormeability given in standard mtric units

Lspu - (std ce) (cm)
(Gec) ead) (em g A F)
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TABLE V

ENERGY/MASS TRANSPORT ANALOGY (For Heat Conduction and Molecular Flow)
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Dimensionless Form for Form for Comments
Ratio Heat Mass
. t' -t P' - P Mass ratio usually given
t' -ty P' - Py in concentration units; how-
ever, for ideal gas, pressure
ratio is equivalent.
K 6 0 K . . -
X e, T 2 — —— is thermal diffusivity,
cp Tp T, N
replace by mass diffusivity
K cD
m AB .
hTrm . Ratios are Nusselt numbers
kx m for heat and mass
r r . . .
n S = Dimensional ratios unchanged
ro T
where:
c peripheral gas concentration P’ peripheral constant pressure
cp isobaric heat capacity Pb initial pressure within body
D mass diffusivity r radius to any given point
DAB diffusivity for ''gas A" ro specimen radius
through ''gas B"
hT surface (peripheral) heat t instantaneous point temperature
transfer coefficient
t! peripheral constant temperature
K thermal conductivity
t initial temperature of body
kx surface mass transfer
conductance o time
P instantaneous point pressure P material density
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